Package: stepjglm 0.0.1

stepjglm: Variable Selection for Joint Modeling of Mean and Dispersion

A Package for selecting variables for the joint modeling of mean and dispersion (including models for mixture experiments) based on hypothesis testing and the quality of model's fit. In each iteration of the selection process, a criterion for checking the goodness of fit is used as a filter for choosing the terms that will be evaluated by a hypothesis test. Pinto & Pereira (2021) <arxiv:2109.07978>.

Authors:Leandro A. Pereira [aut, cre], Edmilson R. Pinto [aut]

stepjglm_0.0.1.tar.gz
stepjglm_0.0.1.zip(r-4.5)stepjglm_0.0.1.zip(r-4.4)stepjglm_0.0.1.zip(r-4.3)
stepjglm_0.0.1.tgz(r-4.4-any)stepjglm_0.0.1.tgz(r-4.3-any)
stepjglm_0.0.1.tar.gz(r-4.5-noble)stepjglm_0.0.1.tar.gz(r-4.4-noble)
stepjglm_0.0.1.tgz(r-4.4-emscripten)stepjglm_0.0.1.tgz(r-4.3-emscripten)
stepjglm.pdf |stepjglm.html
stepjglm/json (API)

# Install 'stepjglm' in R:
install.packages('stepjglm', repos = c('https://lealvespe.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 655 downloads 1 exports 16 dependencies

Last updated 3 years agofrom:7860f67810. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winOKNov 13 2024
R-4.5-linuxOKNov 13 2024
R-4.4-winOKNov 13 2024
R-4.4-macOKNov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:stepjglm

Dependencies:bootdemingDerivlatticelme4MASSMatrixmcrminqanlmenloptrRcppRcppArmadilloRcppEigenrobslopesrsq